Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Clin Med ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1987852

ABSTRACT

Airway management during the COVID-19 pandemic has been one of the most challenging aspects of care that anesthesiologists and intensivists face. This study was conducted to evaluate the management of tracheal intubation in patients with suspected or confirmed COVID-19 infection. This is a cross-sectional and international multicenter study based on a 37-item questionnaire. The survey was available to physicians who had performed intubations and tracheostomies in patients with suspected or confirmed COVID-19 and had provided informed consent to participate. The primary outcome is the preference to use a specific device for tracheal intubation. Secondary outcomes are clinical practice variables, use of video laryngoscopes, difficult airway management, and safety features to prevent cross-infection. This study included 2411 physicians who performed an average of 11.90 and 20.67 tracheal intubations in patients diagnosed or suspected of having COVID-19 disease, respectively. Physicians were mainly from the specialties of Anesthesiology (61.2%) and Intensive Care (7.4%). COVID-19 infection diagnosed by positive PCR or serology in physicians participating in intubation in this study was 15.1%. Respondents considered preoxygenation for more than three minutes very useful (75.7%). The preferred device for tracheal intubation was the video laryngoscope (64.8%). However, the direct laryngoscope (57.9%) was the most commonly used, followed by the video laryngoscope (37.5%). The preferred device to facilitate intubation was the Eschmann guide (34.2%). Percutaneous tracheostomy was the preferred technique (39.5%) over the open tracheostomy (22%). The predicted or unpredicted difficult airway management in these patients was preferably performed with a video laryngoscope (61.7% or 63.7, respectively). Intubation was mostly performed by two or more expert airway physicians (61.6%). The use of personal protective equipment increased the practitioners' discomfort during intubation maneuvers. The video laryngoscope is the preferred device for intubating patients with COVID-19, combined with the Eschmann guide, flexible stylet within the endotracheal tube, or Frova guide to facilitate intubation. The sub-analysis of the two groups of physicians by the level of intubation experience showed a higher use of the video laryngoscope (63.4%) in the experts group and no significant differences between the two groups in terms of cross-infection rates in physicians, in their preference for the use of the video laryngoscope or in the number of intubations performed in confirmed or suspected COVID-19 patients.

2.
J Intern Med ; 291(2): 232-240, 2022 02.
Article in English | MEDLINE | ID: covidwho-1455598

ABSTRACT

BACKGROUND: Anti-SARS-CoV-2 S antibodies prevent viral replication. Critically ill COVID-19 patients show viral material in plasma, associated with a dysregulated host response. If these antibodies influence survival and viral dissemination in ICU-COVID patients is unknown. PATIENTS/METHODS: We studied the impact of anti-SARS-CoV-2 S antibodies levels on survival, viral RNA-load in plasma, and N-antigenaemia in 92 COVID-19 patients over ICU admission. RESULTS: Frequency of N-antigenaemia was >2.5-fold higher in absence of antibodies. Antibodies correlated inversely with viral RNA-load in plasma, representing a protective factor against mortality (adjusted HR [CI 95%], p): (S IgM [AUC ≥ 60]: 0.44 [0.22; 0.88], 0.020); (S IgG [AUC ≥ 237]: 0.31 [0.16; 0.61], <0.001). Viral RNA-load in plasma and N-antigenaemia predicted increased mortality: (N1-viral load [≥2.156 copies/ml]: 2.25 [1.16; 4.36], 0.016); (N-antigenaemia: 2.45 [1.27; 4.69], 0.007). CONCLUSIONS: Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. Our findings support that these antibodies contribute to prevent systemic dissemination of SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19 , COVID-19/immunology , COVID-19/mortality , Critical Illness , Humans , RNA, Viral/blood , SARS-CoV-2
3.
Transl Res ; 236: 147-159, 2021 10.
Article in English | MEDLINE | ID: covidwho-1243239

ABSTRACT

We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.


Subject(s)
COVID-19/blood , COVID-19/genetics , Circulating MicroRNA/blood , Hospitalization , Severity of Illness Index , Aged , Biomarkers/blood , COVID-19/virology , Critical Illness , Female , Humans , Intensive Care Units , Male , SARS-CoV-2/physiology
5.
Crit Care ; 24(1): 691, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977684

ABSTRACT

BACKGROUND: COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. METHODS: A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. RESULTS: The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183-12.968], 0.025), viral RNA load (N1) (1.962 [1.244-3.096], 0.004); viral RNA load (N2) (2.229 [1.382-3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). CONCLUSIONS: SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.


Subject(s)
COVID-19/complications , RNA, Viral/analysis , Viral Load/immunology , Adult , Aged , Biomarkers/analysis , Biomarkers/blood , COVID-19/blood , Chi-Square Distribution , Critical Illness , Female , Humans , Male , Middle Aged , Multivariate Analysis , Polymerase Chain Reaction/methods , RNA, Viral/blood , Statistics, Nonparametric
6.
Crit Care ; 24(1): 597, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-818129

ABSTRACT

BACKGROUND: Awake prone positioning (awake-PP) in non-intubated coronavirus disease 2019 (COVID-19) patients could avoid endotracheal intubation, reduce the use of critical care resources, and improve survival. We aimed to examine whether the combination of high-flow nasal oxygen therapy (HFNO) with awake-PP prevents the need for intubation when compared to HFNO alone. METHODS: Prospective, multicenter, adjusted observational cohort study in consecutive COVID-19 patients with acute respiratory failure (ARF) receiving respiratory support with HFNO from 12 March to 9 June 2020. Patients were classified as HFNO with or without awake-PP. Logistic models were fitted to predict treatment at baseline using the following variables: age, sex, obesity, non-respiratory Sequential Organ Failure Assessment score, APACHE-II, C-reactive protein, days from symptoms onset to HFNO initiation, respiratory rate, and peripheral oxyhemoglobin saturation. We compared data on demographics, vital signs, laboratory markers, need for invasive mechanical ventilation, days to intubation, ICU length of stay, and ICU mortality between HFNO patients with and without awake-PP. RESULTS: A total of 1076 patients with COVID-19 ARF were admitted, of which 199 patients received HFNO and were analyzed. Fifty-five (27.6%) were pronated during HFNO; 60 (41%) and 22 (40%) patients from the HFNO and HFNO + awake-PP groups were intubated. The use of awake-PP as an adjunctive therapy to HFNO did not reduce the risk of intubation [RR 0.87 (95% CI 0.53-1.43), p = 0.60]. Patients treated with HFNO + awake-PP showed a trend for delay in intubation compared to HFNO alone [median 1 (interquartile range, IQR 1.0-2.5) vs 2 IQR 1.0-3.0] days (p = 0.055), but awake-PP did not affect 28-day mortality [RR 1.04 (95% CI 0.40-2.72), p = 0.92]. CONCLUSION: In patients with COVID-19 ARF treated with HFNO, the use of awake-PP did not reduce the need for intubation or affect mortality.


Subject(s)
Coronavirus Infections/therapy , Intubation, Intratracheal/adverse effects , Oxygen Inhalation Therapy/methods , Pneumonia, Viral/therapy , Prone Position , Wakefulness , Aged , COVID-19 , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Risk Assessment
7.
Trials ; 21(1): 717, 2020 Aug 16.
Article in English | MEDLINE | ID: covidwho-714407

ABSTRACT

BACKGROUND: There are no specific generally accepted therapies for the coronavirus disease 2019 (COVID-19). The full spectrum of COVID-19 ranges from asymptomatic disease to mild respiratory tract illness to severe pneumonia, acute respiratory distress syndrome (ARDS), multisystem organ failure, and death. The efficacy of corticosteroids in viral ARDS remains unknown. We postulated that adjunctive treatment of established ARDS caused by COVID-19 with intravenous dexamethasone might change the pulmonary and systemic inflammatory response and thereby reduce morbidity, leading to a decrease in duration of mechanical ventilation and in mortality. METHODS/DESIGN: This is a multicenter, randomized, controlled, parallel, open-label, superiority trial testing dexamethasone in 200 mechanically ventilated adult patients with established moderate-to-severe ARDS caused by confirmed SARS-CoV-2 infection. Established ARDS is defined as maintaining a PaO2/FiO2 ≤ 200 mmHg on PEEP ≥ 10 cmH2O and FiO2 ≥ 0.5 after 12 ± 3 h of routine intensive care. Eligible patients will be randomly assigned to receive either dexamethasone plus standard intensive care or standard intensive care alone. Patients in the dexamethasone group will receive an intravenous dose of 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10. The primary outcome is 60-day mortality. The secondary outcome is the number of ventilator-free days, defined as days alive and free from mechanical ventilation at day 28 after randomization. All analyses will be done according to the intention-to-treat principle. DISCUSSION: This study will assess the role of dexamethasone in patients with established moderate-to-severe ARDS caused by SARS-CoV-2. TRIAL REGISTRATION: ClinicalTrials.gov NCT04325061 . Registered on 25 March 2020 as DEXA-COVID19.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Dexamethasone/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adult , COVID-19 , Dexamethasone/adverse effects , Humans , Outcome Assessment, Health Care , Pandemics , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Sample Size , COVID-19 Drug Treatment
8.
Intensive Care Med ; 46(12): 2200-2211, 2020 12.
Article in English | MEDLINE | ID: covidwho-684325

ABSTRACT

PURPOSE: The main characteristics of mechanically ventilated ARDS patients affected with COVID-19, and the adherence to lung-protective ventilation strategies are not well known. We describe characteristics and outcomes of confirmed ARDS in COVID-19 patients managed with invasive mechanical ventilation (MV). METHODS: This is a multicenter, prospective, observational study in consecutive, mechanically ventilated patients with ARDS (as defined by the Berlin criteria) affected with with COVID-19 (confirmed SARS-CoV-2 infection in nasal or pharyngeal swab specimens), admitted to a network of 36 Spanish and Andorran intensive care units (ICUs) between March 12 and June 1, 2020. We examined the clinical features, ventilatory management, and clinical outcomes of COVID-19 ARDS patients, and compared some results with other relevant studies in non-COVID-19 ARDS patients. RESULTS: A total of 742 patients were analysed with complete 28-day outcome data: 128 (17.1%) with mild, 331 (44.6%) with moderate, and 283 (38.1%) with severe ARDS. At baseline, defined as the first day on invasive MV, median (IQR) values were: tidal volume 6.9 (6.3-7.8) ml/kg predicted body weight, positive end-expiratory pressure 12 (11-14) cmH2O. Values of respiratory system compliance 35 (27-45) ml/cmH2O, plateau pressure 25 (22-29) cmH2O, and driving pressure 12 (10-16) cmH2O were similar to values from non-COVID-19 ARDS patients observed in other studies. Recruitment maneuvers, prone position and neuromuscular blocking agents were used in 79%, 76% and 72% of patients, respectively. The risk of 28-day mortality was lower in mild ARDS [hazard ratio (RR) 0.56 (95% CI 0.33-0.93), p = 0.026] and moderate ARDS [hazard ratio (RR) 0.69 (95% CI 0.47-0.97), p = 0.035] when compared to severe ARDS. The 28-day mortality was similar to other observational studies in non-COVID-19 ARDS patients. CONCLUSIONS: In this large series, COVID-19 ARDS patients have features similar to other causes of ARDS, compliance with lung-protective ventilation was high, and the risk of 28-day mortality increased with the degree of ARDS severity.


Subject(s)
COVID-19/physiopathology , Respiratory Distress Syndrome/physiopathology , Adult , Analysis of Variance , COVID-19/therapy , Correlation of Data , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Severity of Illness Index , Spain , Statistics, Nonparametric
9.
Revista Española de Anestesiología y Reanimación (English Edition) ; 2020.
Article | WHO COVID | ID: covidwho-638505

ABSTRACT

Resumen Antecedentes: No se ha reportado plenamente la evolución clínica de los pacientes críticos de COVID-19 durante su ingreso en la unidad de cuidados intensivos (UCI), incluyendo las complicaciones médicas e infecciosas y terapias de soporte, así como su asociación con la mortalidad en ICU. Objetivo: El objetivo de este estudio es describir las características clínicas y la evolución de los pacientes ingresados en UCI por COVID-19, y determinar los factores de riesgo de la mortalidad en UCI de dichos pacientes. Métodos: Estudio prospectivo, multi-céntrico y de cohorte, que incluyó a los pacientes críticos de COVID-19 ingresados en 30 UCIs de España y Andorra. Se incluyó a los pacientes consecutivos de 12 de Marzo a 26 de Mayo de 2020 si habían fallecido o habían recibido el alta de la UCI durante el periodo de estudio. Se reportaron los datos demográficos, síntomas, signos vitales, marcadores de laboratorio, terapias de soporte, terapias farmacológicas, y complicaciones médicas e infecciosas, realizándose una comparación entre los pacientes fallecidos y los pacientes dados de alta. Resultados: Se incluyó a un total de 663 pacientes. La mortalidad general en UCI fue del 31% (203 pacientes). Al ingreso en UCI los no supervivientes eran más hipoxémicos [SpO2 sin mascarilla de no reinhalación, de 90 (RIC 83 - 93) vs 91 (RIC 87 - 94);p<0,001] y con mayor puntuación en la escala SOFA - Evaluación de daño orgánico secuencial - [SOFA, 7 (RIC 5 - 9) vs 4 (RIC 3 - 7);p<0,001]. Las complicaciones fueron más frecuentes en los no supervivientes: síndrome de distrés respiratorio agudo (SDRA) (95% vs 89%;p=0,009), insuficiencia renal aguda (IRA) (58% vs 24%;p<10-16), shock (42% vs 14%;p<10-13), y arritmias (24% vs 11%;p<10-4). Las súper-infecciones respiratorias, infecciones del torrente sanguíneo y los shock sépticos fueron más frecuentes en los no supervivientes (33% vs 25%;p=0,03, 33% vs 23%;p=0,01 y 15% vs 3%, p=10-7), respectivamente. El modelo de regresión multivariable reflejó que la edad estaba asociada a la mortalidad, y que cada año incrementaba el riesgo de muerte en un 1% (95%IC: 1 - 10, p=0,014). Cada incremento de 5 puntos en la escala APACHE II predijo de manera independiente la mortalidad [OR: 1,508 (1,081, 2,104), p= 0,015]. Los pacientes con IRA [OR: 2,468 (1,628, 3,741), p<10-4)], paro cardiaco [OR: 11,099 (3,389, 36,353), p= 0,0001], y shock séptico [OR: 3,224 (1,486, 6,994), p= 0,002] tuvieron un riesgo de muerte incrementado. Conclusiones: Los pacientes mayores de COVID-19 con puntuaciones APACHE II más altas al ingreso, que desarrollaron IRA en grados II o III y/o shock séptico durante la estancia en UCI tuvieron un riesgo de muerte incrementado. La mortalidad en UCI fue del 31%. Background: The clinical course of COVID-19 critically ill patients, during their admission in the intensive care unit (UCI), including medical and infectious complications and support therapies, as well as their association with in-ICU mortality has not been fully reported. Objective: This study aimed to describe clinical characteristics and clinical course of ICU COVID-19 patients, and to determine risk factors for ICU mortality of COVID-19 patients. Methods: Prospective, multicentre, cohort study that enrolled critically ill COVID-19 patients admitted into 30 ICUs from Spain and Andorra. Consecutive patients from March 12th to May 26th, 2020 were enrolled if they had died or were discharged from ICU during the study period. Demographics, symptoms, vital signs, laboratory markers, supportive therapies, pharmacological treatments, medical and infectious complications were reported and compared between deceased and discharged patients. Results: A total of 663 patients were included. Overall ICU mortality was 31% (203 patients). At ICU admission non-survivors were more hypoxemic [SpO2 with non-rebreather mask, 90 (IQR 83 to 93) vs 91 (IQR 87 to 94);p<0.001] and with higher sequential organ failure assessment score [SOFA, 7 (IQR 5 to 9) s 4 (IQR 3 to 7);p<0.001]. Complicatio s were more frequent in non-survivors: acute respiratory distress syndrome (ARDS) (95% vs 89%;p=0.009), acute kidney injury (AKI) (58% vs 24%;p<10-16), shock (42% vs 14%;p<10-13), and arrhythmias (24% vs 11%;p<10-4). Respiratory super-infection, bloodstream infection and septic shock were higher in non-survivors (33% vs 25%;p=0.03, 33% vs 23%;p=0.01 and 15% vs 3%, p=10-7), respectively. The multivariable regression model showed that age was associated with mortality, with every year increasing risk-of-death by 1% (95%CI: 1 to 10, p=0.014). Each 5-point increase in APACHE II independently predicted mortality [OR: 1.508 (1.081, 2.104), p= 0.015]. Patients with AKI [OR: 2.468 (1.628, 3.741), p<10-4)], cardiac arrest [OR: 11.099 (3.389, 36.353), p= 0.0001], and septic shock [OR: 3.224 (1.486, 6.994), p= 0.002] had an increased risk-of-death. Conclusions: Older COVID-19 patients with higher APACHE II scores on admission, those who developed AKI grades II or III and/or septic shock during ICU stay had an increased risk-of-death. ICU mortality was 31%.

SELECTION OF CITATIONS
SEARCH DETAIL